Interactively Learning Visually Grounded Word Meanings from a Human Tutor

نویسندگان

  • Yanchao Yu
  • Arash Eshghi
  • Oliver Lemon
چکیده

We present a multi-modal dialogue system for interactive learning of perceptually grounded word meanings from a human tutor. The system integrates an incremental, semantic parsing/generation framework Dynamic Syntax and Type Theory with Records (DS-TTR) with a set of visual classifiers that are learned throughout the interaction and which ground the meaning representations that it produces. We use this system in interaction with a simulated human tutor to study the effect of different dialogue policies and capabilities on accuracy of learned meanings, learning rates, and efforts/costs to the tutor. We show that the overall performance of the learning agent is affected by (1) who takes initiative in the dialogues; (2) the ability to express/use their confidence level about visual attributes; and (3) the ability to process elliptical as well as incrementally constructed dialogue turns.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The BURCHAK corpus: a Challenge Data Set for Interactive Learning of Visually Grounded Word Meanings

We motivate and describe a new freely available human-human dialogue data set for interactive learning of visually grounded word meanings through ostensive definition by a tutor to a learner. The data has been collected using a novel, character-by-character variant of the DiET chat tool (Healey et al., 2003; Mills and Healey, submitted) with a novel task, where a Learner needs to learn invented...

متن کامل

VOILA: An Optimised Dialogue System for Interactively Learning Visually-Grounded Word Meanings (Demonstration System)

We present VOILA: an optimised, multimodal dialogue agent for interactive learning of visually grounded word meanings from a human user. VOILA is: (1) able to learn new visual categories interactively from users from scratch; (2) trained on real human-human dialogues in the same domain, and so is able to conduct natural spontaneous dialogue; (3) optimised to find the most effective trade-off be...

متن کامل

Learning how to Learn: An Adaptive Dialogue Agent for Incrementally Learning Visually Grounded Word Meanings

We present an optimised multi-modal dialogue agent for interactive learning of visually grounded word meanings from a human tutor, trained on real human-human tutoring data. Within a life-long interactive learning period, the agent, trained using Reinforcement Learning (RL), must be able to handle natural conversations with human users, and achieve good learning performance (i.e. accuracy) whil...

متن کامل

VL 2017 The 6 th Workshop on Vision and Language

We motivate and describe a new freely available human-human dialogue data set for interactive learning of visually grounded word meanings through ostensive definition by a tutor to a learner. The data has been collected using a novel, character-by-character variant of the DiET chat tool (Healey et al., 2003; Mills and Healey, submitted) with a novel task, where a Learner needs to learn invented...

متن کامل

Training an adaptive dialogue policy for interactive learning of visually grounded word meanings

We present a multi-modal dialogue system for interactive learning of perceptually grounded word meanings from a human tutor. The system integrates an incremental, semantic parsing/generation framework Dynamic Syntax and Type Theory with Records (DS-TTR) with a set of visual classifiers that are learned throughout the interaction and which ground the meaning representations that it produces. We ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016